The Post Correspondence Problem

Some undecidable problems for context-free languages:

- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\varnothing$?
G_{1}, G_{2} are context-free grammars
- Is context-free grammar G ambiguous?

We need a tool to prove that the previous problems for context-free languages are undecidable:

The Post Correspondence Problem

The Post Correspondence Problem

Input: Two sets of n strings

$$
\begin{aligned}
& A=w_{1}, w_{2}, \ldots, w_{n} \\
& B=v_{1}, v_{2}, \ldots, v_{n}
\end{aligned}
$$

There is a Post Correspondence Solution if there is a sequence i, j, \ldots, k such that:

PC-solution: $w_{i} w_{j} \cdots w_{k}=v_{i} v_{j} \cdots v_{k}$

Indices may be repeated or omitted

Example:

$$
A:
$$

w_{1}
100
w_{2}
11
w3
111
v_{1}
v_{2}
v_{3}
B :
001
111
11
$w_{2} w_{1} w_{3}=v_{2} v_{1} v_{3}$

11100111

Example:

$$
A:
$$

v_{1}
v_{2}
v_{3}
B :
0
11
011

There is no solution

Because total length of strings from B is smaller than total length of strings fron ${ }^{2} A$

The Modified Post Correspondence Problem

Inputs:

$$
A=w_{1}, w_{2}, \ldots, w_{n}
$$

$$
B=v_{1}, v_{2}, \ldots, v_{n}
$$

MPC-solution: $\quad 1, i, j, \ldots, k$

$$
w_{1} w_{i} w_{j} \cdots w_{k}=v_{1} v_{i} v_{j} \cdots v_{k}
$$

Example:

$$
\begin{array}{cccc}
& w_{1} & w_{2} & w_{3} \\
A: & 11 & 111 & 100 \\
& & & \\
& v_{1} & v_{2} & v_{3} \\
B: & 111 & 11 & 001
\end{array}
$$

We will show:

1. The MPC problem is undecidable
(by reducing the membership to MPC)
2. The $P C$ problem is undecidable (by reducing MPC to PC)

Theorem: The MPC problem is undecidable

Proof: We will reduce the membership problem to the MPC problem

Membership problem

Input: Turing machine M string w
 Question: $w \in L(M)$?

Undecidable

Membership problem

Input: unrestricted grammar G string w

Question: $w \in L(G)$?

Undecidable

Suppose we have a decider for

 the MPC problem
String Sequences

MPC solution?

We will build a decider for
the membership problem

$$
w \in L(G) ?
$$

The reduction of the membership problem to the MPC problem:

Membership problem decider

We need to convert the input instance of one problem to the other

Membership problem decider

Reduction:

Convert grammar \boldsymbol{G} and string \boldsymbol{w} to sets of strings A and B

Such that:

G generates \boldsymbol{w}

There is an MPC solution for A, B

A	B	Grammar G
$F S \Rightarrow$	F	S : start variable $F:$ special symbol
a	a	For every symbol a
V	V	For every variable V

A	B	Grammar G
E	$\Rightarrow w E$	string w $E:$ special symbol
y	x	For every production $x \rightarrow y$
\Rightarrow	\Rightarrow	

Example:

Grammar G :
 $S \rightarrow a A B b \mid B b b$
 $B b \rightarrow C$
 $A C \rightarrow a a c$

String $w=a a a c$

A		B	
$w_{1}:$	$F S \Rightarrow$	$v_{1}:$	F
$w_{2}:$	a	$v_{2}:$	a
$w_{3}:$	b	$v_{3}:$	b
	c		c
\vdots	A	\vdots	A
	B		B
	C		C
$w_{8}:$	S	$v_{8}:$	S

	A	B	
$w_{9}:$	E	$v_{9}:$	\Rightarrow aaacE
	$a A B b$		S
\vdots	$B b b$		S
	C	\vdots	$B b$
	$a a c$		$A C$
$w_{14}:$	\Rightarrow	$v_{14}:$	\Rightarrow

Grammar $G: \quad S \rightarrow a A B b \mid B b b$

$$
B b \rightarrow C
$$

$A C \rightarrow a a c$
$a a a c \in L(G):$
$S \Rightarrow a A B b \Rightarrow a A C \Rightarrow a a a c$

Derivation: S

$S \rightarrow a A B b \mid B b b$
$B b \rightarrow C$
$A C \rightarrow a a c$

A: $\quad w_{1}$

$B: \quad v_{1}$

Derivation: $S \Rightarrow a A B b$

A:
$w_{1} \quad w_{10}$

$B: \quad v_{1} v_{10}$

Derivation:

| $S \rightarrow a A B b$ | $B b b$ |
| :--- | :--- | $B b \rightarrow C$

$S \Rightarrow a A B b \Rightarrow a A C$

A: $\quad w_{1} \quad w_{10} \quad w_{14} \quad w_{2} \quad w_{5} w_{12}$

$B: v_{1} v_{10} v_{14} v_{2} v_{5} v_{12}$

Derivation:
 $S \Rightarrow a A B b \Rightarrow a A C \Rightarrow a a a c$

$S \rightarrow a A B b$	$B b b$

$B b \rightarrow C$
$A: \quad w_{1} \quad w_{10} \quad w_{14} \quad w_{2} w_{5} w_{12} w_{14} w_{2} \quad w_{13}$

$F S \Rightarrow a A B \quad b \Rightarrow a A C \Rightarrow a a a c E$
r
$B: v_{1} v_{10} v_{14} v_{2} v_{5} v_{12} v_{14} v_{2} v_{13}$

Derivation: $S \Rightarrow a A B b \Rightarrow a A C \Rightarrow a a a c$

$A: \quad w_{1} \quad w_{10} \quad w_{14} w_{2} w_{5} w_{12} w_{14} w_{2} \quad w_{13} \quad w_{9}$

$B: v_{1} v_{10} v_{14} v_{2} v_{5} v_{12} v_{14} v_{2} v_{13}$

(A, B) has an MPC-solution

$w \in L(G)$

Membership problem decider

Since the membership problem is undecidable,
The MPC problem is undecidable

Theorem: The PC problem is undecidable

Proof: We will reduce the MPC problem to the PC problem

Suppose we have a decider for the PC problem

String Sequences
 PC solution?

We will build a decider for the MPC problem

String Sequences

MPC solution?

The reduction of the MPC problem to the PC problem:

MPC problem decider

We need to convert the input instance of one problem to the other

MPC problem decider

A, B : input to the MPC problem

$$
\begin{gathered}
A=w_{1}, w_{2}, \ldots, w_{n} \\
B=v_{1}, v_{2}, \ldots, v_{n}
\end{gathered}
$$

Translated

 toC,D : input to the PC problem

$$
\begin{aligned}
& C=w_{1}^{\prime}, \ldots, W_{n}^{\prime}, W_{n+1}^{\prime} \\
& D=V_{1}^{\prime}, \ldots, V_{n}^{\prime}, V_{n+1}^{\prime}
\end{aligned}
$$

A
$w_{i}=\sigma_{1} \sigma_{2} \cdots \sigma_{k} \quad w_{i}^{\prime}=\sigma_{1}{ }^{*} \sigma_{2}{ }^{*} \cdots \sigma_{k}{ }^{*}$
For each i
replace $\boldsymbol{w}_{1}^{\prime}={ }^{*} \boldsymbol{w}_{1}^{\prime}$

$$
w_{n+1}^{\prime}=\diamond
$$

B
D
$v_{i}=\pi_{1} \pi_{2} \cdots \pi_{k}$
$\Longleftrightarrow v_{i}^{\prime}={ }^{\star} \pi_{1}{ }^{*} \pi_{2}{ }^{*} \ldots{ }^{*} \pi_{k}$
For each i

$$
v_{n+1}^{\prime}=\star \diamond
$$

PC-solution
 $w_{1}^{\prime} w_{i}^{\prime} \cdots w_{k}^{\prime} w_{n+1}^{\prime}=v_{1}^{\prime} v_{i}^{\prime} \cdots w_{k}^{\prime} v_{n+1}^{\prime}$

 These strings

$$
\begin{gathered}
C \quad \text { PC-solution } \quad D \\
w_{1}^{\prime} w_{i}^{\prime} \cdots w_{k}^{\prime} w_{n+1}^{\prime}=v_{1}^{\prime} v_{i}^{\prime} \cdots w_{k}^{\prime} v_{n+1}^{\prime} \\
A \quad B \\
w_{1} w_{i} \cdots w_{k}=v_{1} v_{i} \cdots v_{k} \\
\text { MPC-solution }
\end{gathered}
$$

C, D has a PC solution

A, B has an MPC solution

MPC problem decider

Since the MPC problem is undecidable, The PC problem is undecidable

Some undecidable problems for context-free languages:

- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\varnothing$?
G_{1}, G_{2} are context-free grammars
- Is context-free grammar G ambiguous?

We reduce the PC problem to these proble 15

Theorem: Let G_{1}, G_{2} be context-free grammars. It is undecidable to determine if

$$
L\left(G_{1}\right) \cap L\left(G_{2}\right)=\varnothing
$$

(intersection problem)

Proof: Reduce the PC problem to this problem

Suppose we have a decider for the intersection problem

Context-free

$$
L\left(G_{1}\right) \cap L\left(G_{2}\right)=\varnothing ?
$$

Emptyinterection problem decider

 \longrightarrow YES
We will build a decider for

 the PC problem
String Sequences
 PC solution?

The reduction of the PC problem to the empty-intersection problem:

PC problem decider

We need to convert the input instance of one problem to the other

PC problem decider

Introduce new unique symbols: $a_{1}, a_{2}, \ldots, a_{n}$
$A=w_{1}, w_{2}, \ldots, w_{n}$
$L_{A}=\left\{s: \quad s=w_{i} w_{j} \cdots w_{k} a_{k} \cdots a_{j} a_{i}\right\}$
Context-free grammar $G_{A}: S_{A} \rightarrow w_{i} S_{A} a_{i} \mid w_{i} a_{i}$

$$
\begin{aligned}
& B=v_{1}, v_{2}, \ldots, v_{n} \\
& L_{B}=\left\{s: \quad s=v_{i} v_{j} \cdots v_{k} a_{k} \cdots a_{j} a_{i}\right\}
\end{aligned}
$$

Context-free grammar $G_{B}: S_{B} \rightarrow v_{i} S_{B} a_{i} \mid v_{i j_{i}} a_{j}$

(A, B) has a PC solution

$$
\begin{gathered}
L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \varnothing \\
s=w_{i} w_{j} \cdots w_{k} a_{k} \cdots a_{j} a_{i} \\
s=v_{i} v_{j} \cdots v_{k} a_{k} \cdots a_{j} a_{i}
\end{gathered}
$$

Because $a_{1}, a_{2}, \ldots, a_{n}$ are unique
There is a PC solution:

$$
w_{i} w_{j} \cdots w_{k}=v_{i} v_{j} \cdots v_{k}
$$

PC problem decider

Since PC is undecidable,
the Intersection problem is undecidable

END OF PROOF

Theorem: For a context-free grammar G it is undecidable to determine if G is ambiguous

Proof: Reduce the PC problem to this problem

PC problem decider

$S_{A} \quad$ start variable of G_{A}
$S_{B} \quad$ start variable of G_{B}

S start variable of G

$$
S \rightarrow S_{A} \mid S_{B}
$$

(A, B) has a PC solution

$$
L\left(G_{A}\right) \cap L\left(G_{B}\right) \neq \varnothing
$$

G is ambiguous

