THE POST CORRESPONDENCE PROBLEM

Some <u>undecidable</u> problems for context-free languages:

• Is $L(G_1) \cap L(G_2) = \emptyset$? G_1, G_2 are context-free grammars

• Is context-free grammar G ambiguous?

We need a tool to prove that the previous problems for context-free languages are <u>undecidable</u>:

The Post Correspondence Problem

The Post Correspondence Problem

Input: Two sets of n strings

$$A = w_1, w_2, ..., w_n$$

$$B = v_1, v_2, \dots, v_n$$

There is a Post Correspondence Solution if there is a sequence i, j, ..., k such that:

PC-solution:

$$w_i w_j \cdots w_k = v_i v_j \cdots v_k$$

Indices may be repeated or omitted

PC-solution: 2,1,3

 $w_2 w_1 w_3 = v_2 v_1 v_3$

The Modified Post Correspondence Problem

Inputs:
$$A = w_1, w_2, ..., w_n$$

$$B = v_1, v_2, ..., v_n$$

MPC-solution:
$$1, i, j, \dots, k$$

$$w_1 w_i w_j \cdots w_k = v_1 v_i v_j \cdots v_k$$

We will show:

The MPC problem is undecidable (by reducing the membership to MPC)

2. The PC problem is undecidable (by reducing MPC to PC)

Theorem: The MPC problem is undecidable

Proof: We will reduce the membership problem to the MPC problem

Membership problem

Input: Turing machine M string w

Question: $W \in L(M)$?

<u>Undecidable</u>

Membership problem

Input: unrestricted grammar G string w

Question: $w \in L(G)$?

<u>Undecidable</u>

The reduction of the membership problem to the MPC problem:

Membership problem decider

We need to convert the input instance of one problem to the other

Membership problem decider

Reduction:

Convert grammar G and string Wto sets of strings A and B

Such that:

G generates W

There is an MPC solution for A, B

A	В	Grammar G
$FS \Rightarrow$	F	S : start variable F : special symbol
a	a	For every symbol a
V	V	For every variable V

A	B	Grammar G
E	$\Rightarrow wE$	string w E : special symbol
У	X	For every production $x \rightarrow y$
\Rightarrow	\Rightarrow	20

$Grammar \quad G: \qquad S \to aABb \mid Bbb$

 $Bb \rightarrow C$

 $AC \rightarrow aac$

String w = aaac

	A		В
<i>w</i> ₁ :	$FS \Longrightarrow$	<i>v</i> ₁ :	F
$w_2:$ $w_3:$	a	v_2 :	a
<i>W</i> ₃ :	b	<i>V</i> ₃ :	b
	С		С
• •	A	•	A
	В		B
	C		<i>C</i> 22
w ₈ :	S	<i>v</i> ₈ :	S

A			B	
w9:	E	<i>v</i> ₉ :	\Rightarrow aaacE	
	aABb		S	
•	Bbb	•	S	
•	C	•	Bb	
	aac		AC	
w ₁₄ :	\Rightarrow	<i>v</i> ₁₄ :	\Rightarrow	
			23	

Grammar G: $S \rightarrow aABb \mid Bbb$ $Bb \rightarrow C$ $AC \rightarrow aac$

$aaac \in L(G)$:

$S \Rightarrow aABb \Rightarrow aAC \Rightarrow aaac$

(A, B) has an MPC-solution

 $w \in L(G)$

Membership problem decider

Since the membership problem is undecidable, The MPC problem is undecidable

END OF PROOF

Theorem: The PC problem is undecidable

Proof: We will reduce the MPC problem to the PC problem

The reduction of the MPC problem to the PC problem:

MPC problem decider

We need to convert the input instance of one problem to the other

MPC problem decider

PC-solution CD $w'_1w'_i\cdots w'_kw'_{n+1}=v'_1v'_i\cdots w'_kv'_{n+1}$ Has to start with These strings

C PC-solution $W_1'W_i'\cdots W_k'W_{n+1}'=V_1'V_i'\cdots W_k'V_{n+1}'$ A $W_1 W_j \cdots W_k = V_1 V_j \cdots V_k$ **MPC-solution**

C, D has a PC solution

A, B has an MPC solution

Since the MPC problem is undecidable, The PC problem is undecidable

END OF PROOF

Some <u>undecidable</u> problems for context-free languages:

> • Is $L(G_1) \cap L(G_2) = \emptyset$? G_1, G_2 are context-free grammars

• Is context-free grammar G ambiguous?

We reduce the PC problem to these problems

Theorem: Let G_1, G_2 be context-free grammars. It is undecidable to determine if $L(G_1) \cap L(G_2) = \emptyset$ (intersection problem)

Proof: Reduce the PC problem to this problem

We need to convert the input instance of one problem to the other

PC problem decider

Introduce new unique symbols: a_1, a_2, \dots, a_n $A = w_1, w_2, \dots, w_n$ $L_A = \{s: s = w_i w_j \cdots w_k a_k \cdots a_j a_i\}$ Context-free grammar $G_A: S_A \rightarrow w_i S_A a_i \mid w_i a_i$ $B = v_1, v_2, ..., v_n$ $L_B = \{s: s = v_i v_j \cdots v_k a_k \cdots a_j a_i\}$ Context-free grammar $G_B: S_B \to v_i S_B a_i \mid v_i a_i$

(A,B) has a PC solution

 $L(G_A) \cap L(G_B) \neq \emptyset$

$$L(G_1) \cap L(G_2) \neq \emptyset$$

$$s = w_i w_j \cdots w_k a_k \cdots a_j a_i$$

$$s = v_i v_j \cdots v_k a_k \cdots a_j a_i$$

Because a_1, a_2, \dots, a_n are unique There is a PC solution: $W_i W_j \cdots W_k = V_i V_j \cdots V_k$

Since PC is undecidable, the Intersection problem is undecidable

END OF PROOF

Theorem: For a context-free grammar G , it is undecidable to determine if G is ambiguous

Proof: Reduce the PC problem to this problem

S_A start variable of G_A

S_B start variable of G_B

S start variable of G $S \rightarrow S_A \mid S_B$

(A,B) has a PC solution

 $L(G_A) \cap L(G_B) \neq \emptyset$

G is ambiguous